Active Learning for Artificial Intelligence

image108

Data Science Services

Our team of expert Data Scientists with academic and industry track records provide data science as a service leveraging the Active Learning toolbox of H3M.

Curious machines

Artificial Intelligence (AI) systems, just like any intelligent system, needs to learn in order to produce a valuable outcome. In today’s applications, the value of the outcome is usually defined by correctly predicting a specific label for an unlabeled set item. 


Many AI systems rely on supervised learning, where AI utilizes a group of labeled samples in order to build a model, which later can be applied to estimate the unlabeled samples. A simple example being AI trying to diagnose undiagnosed MRI scans from the information it has learned from a diagnosed set.

Challenges with traditional approaches

The technological challenge in application of supervised learning becomes more and more as the data generated by society and businesses increase exponentially and it becomes harder to build models from small training sets and labeling process becomes a major blocking issue with limited number of subject-matter experts to label them. 


Reinforcement learning is a solution where AI can test the outputs in real world, by iterative test and improvement. A very well known recent application of this technique has been implemented in the AlphaGo project.


However, there are many cases where the afore-mentioned process is not feasible. Referring to earlier example, it is impossible to ask doctors whole set of label millions of sample MRI scans.

How can you help machines learn?

For the big data problems where traditional approaches become insufficient, Active Learning (AL), which can be defined by learning by asking questions come into the picture. 


As an analogy to children learning process, supervised learning can be viewed as learning with observations, reinforcement learning can be viewed as trial and error, and AL can be viewed as learning from a teacher by asking questions.


In order make AI a viable alternative, or even a major supporting element to human decision process, the learning process of AI needs to be enhanced. To accomplish that goal, question process should become efficient and intelligent. AI should be able to learn maximum amount of information with minimum number of questions, which is proportional to experts’ time and money spent on the learning process.


Active Learning is about AI finding the right questions to learn.